일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- ros2 foxy tutorial
- ros2 환경설정
- nav2 tutorial
- Nav2 document
- foxy nav2
- Python
- ros2 development guides
- nav2 development guides
- CODEUP 6073
- humble 환경설정
- CodeUp
- ros2 튜토리얼
- ROS FOXY 튜토리얼
- ros2 remapping
- 코드업
- nav2 dev contatiner
- ros2 튜토리얼 환경설정
- nav2 튜토리얼
- nav2 getting started
- error
- development guides
- nav2 development guides
- Foxy tutorial
- ros2 configuring environment
- nav2 설치
- first-time robot setup guide
- humble development guides
- docker foxy
- nav2 first-time robot setup guide
- ros2 foxy docker
Archives
- Today
- Total
목록torch.nn.BatchNorm2d() (1)
BAN2ARU
[Python/ Pytorch] torch.nn.BatchNorm2d()
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html를 기반으로 작성하였음. CLASS torch.nn.BatchNorm2d( num_features, eps=1e-05, momentum=0.1, affine=True, track_runing_stats=True, device=None, dtype=None ) Batch Normalization $$ y=\frac{x-E[x]}{\sqrt{Var[x]+\epsilon}} *\gamma +\beta $$ 각 batch 별로 평균(mean)과 분산(variance)를 이용해 정규화하는 것을 의미함 파라미터 num_features : input size $(N,C,H,W)$에서 $C$ ($N$..
Language/Python
2022. 4. 21. 16:11